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The positive P representation and the laser equations 
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Worcs WR14 3PS, UK 

Received 8 November 1985 

Abstract. The drift in the Fokker-Planck equation in the positive P representation describ- 
ing a gas laser is shown to have a continuum of stable steady states. Only a small subset 
is physically acceptable. It is demonstrated that the diffusion does manage to average over 
the unphysical steady states to give correct correlation properties in the lasing region. 
However, in the chaotic region the positive P representation equations have additional 
instabilities. As a consequence the positive P representation in the chaotic region leads 
to behaviour either different from known solutions or breaks down. 

1. Introduction 

The dynamics in quantum non-equilibrium statistical mechanics can be expressed 
through a master equation [ l ,  21 for the dysity matrix operator. Frequently this 
equation is converted into one for a c-number function, known as a quasi-probability 
distribution which is not a distribution in the sense of classical probability theory. It 
is often the case that the quasi-probability distributions satisfy a Fokker-Planck 
equation [3] to a good approximation. The non-classical nature of the distributions 
is caused by d ihs ion  matrices associated with the Fokker-Planck equation which are 
not uniformly positive definite throughout phase space. In order to be able to use the 
classical concepts of probability distributions, Drummond and Gardiner [4] proposed 
extending the physical phase space by incorporating non-physical degrees of freedom. 
In fact the dimension of the resulting phase space is twice that of the original space. 
Such distributions would allow 'classical' probability distributions to describe non- 
classical phenomena [ 5 ]  such as anti-bunching. We will now outline a way of introduc- 
ing the positive P representation. If 9' = { Oi, O:} is a complete set of operators for a 
system (in the sense that any other operators can be expressed as a polynomial of 
these operators) then the characteristic function [6] x s p ( A j ,  A:) associated with 9' is 

n 

exp(iAjOj) n exp(iAj,Oj,) 
j = 1  j ' =  1 

and p is the density matrix. A function P9({aj, CY;}) can be associated with x9, namely 
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Here Aj and A; are independent complex numbers for all j .  There is no explicit 
transform which expresses Psp in terms of x9. In fact, the existence or the uniqueness 
of such a P cannot be proved in general. For the case when Y = {a, a+}, and a and 
a+ are the annihilation and creation operators for the harmonic oscillator, it can be 
shown that there exists a suitable Psp. A possible P9(a, a’) has the form [2] 

(3) 
1 

4T2 
~ ~ ( 0 ,  a’) =-exp(-$(af -n*(2) ( f (a’+a*) lp l t (a’+  a*)>. 

a I P )  = P I P) .  
The state I@) is such that 

(4) 
However, when Y contains atomic operators no such simple form for P9 is known. 

The master equation for p implies in general a partial differential equation with 
derivatives of arbitrarily high order for x9. If a system size expansion [I] is valid this 
reduces to a second-order one in { A i ,  Ai}. In turn this approximate equation can be 
satisfied if Psp satisfies a Fokker-Planck equation (provided P9 falls off sufficiently 
fast at infinity to allow integration by parts). This is a sufficient condition, but not a 
necessary one, and there is no guarantee that a self-consistent solution for P exists. 

In P9({ai, a i } )  the ai and ai are independent complex numbers for all i. This is 
the source of the doubling of the dimension of the apparent phase space. The above 
discussion is formal. A rigorous derivation of a positive P representation has only 
been given for theories containing just photon operators. Little non-perturbative 
analysis of the positive P equations for the laser (where atomic variables are present) 
has been done. This will be given here. 

A standard master equation [7] for a gas laser will be solved in the Fokker-Planck 
approximation for Psp. The drift in the Fokker-Planck equation for P9 is found to 
have a continuum of steady states whose modulus is not a fixed constant (as found in 
the Wigner representation [SI). For this reason the majority of the steady states are 
unphysical. 

In the lasing region the phase diffusion is adequate to average over these unphysical 
steady states to give correct properties. In the chaotic region the eigenvalues of the 
stability matrix around the steady states indicate instabilities in unphysical directions 
such as the imaginary part of the inversion. This instability grows to give severe lack 
of conjugacy in variables which represent conjugate operators; owing to this the positive 
P representation has difficulties in the chaotic region and leads to a picture quite 
different from that which is expected and known. Moreover for large enough (but 
moderate) noise the positive P picture breaks down. 

In 0 2 the laser master equation and the associated Ito-Langevin stochastic differen- 
tial equations [2,9] are presented for the positive P representation. 

2. The laser stochastic differential equation 

The usual master equation for the laser [7] is 

dp ld t  =: [H, PI+ (Lap, + [a, p a + l ) + A ~ p  

where the Hamiltonian H and the Liouvillian AA are given by 
N 

H = i g h  [exp(-ik. x,)a+a;-exp(ik. x,)aaz] 
p = l  
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The coupling constant g is ( 2 ~ o p ~ / h V ) " ~  where p is the atomic dipole moment, 
V the cavity volume and o is the resonance frequency of the atoms and of the field 
mode in tune with it; p is the density matrix. a and a+ are annihilation and creation 
operators for the field mode in a ring cavity. The atoms are modelled as having only 
two levels and {a:, a:} are the Pauli matrices associated with the vth atom. K is the 
cavity damping rate, 711 and yo are atomic population and collision-induced polarisation 
decay rates and yu is related to a pumping rate. In order to have lasing it is necessary 
that yy > yI1. Moreover we will consider the situation where yo >> yu. After somewhat 
lengthy analysis the Ito equations associated with the positive P distribution can be 
found in terms of intensive variables. 

Z is a complex intensive variable proportional to the inversion; X I  , X , ,  Y ,  and 
Y2 are independent complex intensive variables 'proportional to' a, a+,  

c a; and 
P P 

The equations generate expectation values of normal ordered operator products. They 
are as follows: 

3 
d Y1= ( - Yl+ X1 Z )  d~ + 2 3 / 2 ~  1 d, ,, d W,, 

,,=I 

3 
dY2= (- Y2+X2Z)  d ~ + 2 ~ / ~ ~  d3u d W, 

u = l  

3 
d Z  = b(r - 2)  dT- ( Y l X 2 +  Y 2 X l )  d 7 + 2 ~  d2,, d W, (12) 

" = l  

where 

and 

d d T = D  
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with D a symmetric matrix defined by 

4 
C 
- ( 2 + 2 C )  

D =  1 
4x2 YZ 

C 

There is no unique solution for d ;  d, for example can be multiplied by an orthogonal 
matrix. We have tried two decompositions; these give similar results in regions where 
both are non-singular. 

The two decompositions are best given for a general (3 x 3) matrix (; ; ;). 
The first expression for d is 

where 

/i =:(A +/L)+@ 

h=;p- : (A+p)  

P = i ( P  - A )  

G = f ( a + S )  

8 = f ( a  -8) .  

The second Cholesky decomposition has the following expression for d :  
1 0 

1 
P I P  (Pa - f f P ) / ( P Y  - f f 2 )  1 

( Y  - ffZ/p)1’2 

{ [AP - P2-  (P8 - aP>’/(PY - ff2)1P -1 1 1/2 

(17) 
Clearly this is singular when 
threshold. 

is very small and so would be unsuitable near the laser 
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3. The deterministic case 

We shall examine the steady states of (8)-(12) in the absence of noise and for r 
non-zero. These states for r >  1 are given by 

In addition there is a state 

x1=x2=0= Y 1 =  Y2 (24) 

Z = r. (25) 

The steady states for which conjugacy does not hold are unphysical. A linearised 
stability analysis can be done for any of these states (and the details can be found in 
the appendix). For (18)-(23) the associated eigenvalues (which each appear twice) 
satisfy 

A ( A  +a+  1)[A(A +a+  1)(A + b ) +  b ( r -  1)(A +2a) ]  = O .  (26) 

The cubic in the above brackets appears in the analysis of the real Lorenz equations 
[lo-121. Consequently there is a subcritical Hopf bifurcation [lo-121 to chaos for our 
system at the same value of r (>1) for all the steady states. It can be shown that 
(21)-(23) define unstable states, while for O <  r < 1 the states of (24) and (25) are stable. 

We will now examine some general properties of the time-dependent solutions of 
the positive P deterministic equations (8)-( 12)). The variable 

W = X 2 Y 1 -  Y2X1 (27) 

satisfies 

w = - (1 + a) w. 
The vanishing of W is a necessary (but not sufficient) condition for conjugacy. Clearly 

W (  t )  = W ( 0 )  exp[ -( 1 + a) t ]  + 0 as t+oo ( 2 9  

a very rapid decay indeed when a =  10. We would expect the behaviour of W to be 
robust in the presence of noise. 

Now 

d X1 a 
-log - = - W. 
d t  X ,  XlX2 

Similarly 

d Y, -U 
--log-=- W. 
d t  Y2 Yl Y2 
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Since W vanishes asymptotically (30) and (31) imply 

x, /x ,  = Yl /  Y, = a t+w.  

Again, this asymptotic value should be ‘reached’ quickly. Here a is a complex constant. 
In fact from (30) 

a can be calculated explicitly in two cases, which we now give. If 

x,(o) = (x,(o))* = x e-i4 

~ ~ ( 0 )  = ( Y,(o))* = CF, e-i4 

with Z(O), x and + real, then 

Also, if 

x,(o) = (x , (o ) )*  = x e-’&. 

Y,(o) = ( Y,(o))* = CF, 
with Z(O),  x and JI real, then 

x exp( -ia2xJI sin(& -4,,) dt’(Xl(t’)l-2 exp[-(a+ l ) t ]  - X l ( t )  - 
X2(t)  - 

(34) 

(37) 

Clearly X , (  t ) / X 2 (  t )  is unimodular. Hence 

as t + w  (38) 
2i 4 a = e  

with 

4 = &-axJIsin(r$,-+,,) dt’(Xl(t’)l-2exp[-(a+l)t’]. (39) 

( d / d t ) ( X , - X , * ) = - a ( X , - X f ) + a (  Yl - YT) (40) 
(d/dt)(  Y1- Y f )  = -( Y1- YT) + (XI - X ? ) Z  (41) 
(d /d t )Z  = -b( Z - r )  - ( X I  Y2 + X 2  Y , )  (42) 

evolution from the initial conditions of (34) and (36) preserve conjugacy when there 
is rigorously no noise to arbitrary precision. In order to examine the stability of the 
conjugacy relationship it is useful to first obtain equations which have incorporated 
the asymptotic conditions given by (32) and the vanishing of W. The time evolution 
asymptotically, i.e. on the attractor, is given by 

JOm 
Equations (35) and (37) are only necessary conditions for conjugacy. However since 

a ( X  - Y )  (43) x = -  

Y = - Y + X Z  (44) 
Z =  - b ( Z  - r )  - X Y  (45) 

where 
x = (2/G)”2Xl Y = (2/di)”2Y1.  
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X, Y and Z are in general complex. Conjugacy would require these variables to be 
real. In order to examine small deviations from conjugacy we can write 

(48 1 X = Xr + i6, 

Y =  Y,+i6, (49) 

( 50) Z = Zr + i 6, 

where X , ,  Y,, Z,, a,, 6, and 6, are real. Equations (43)-(45) imply 

The evolution of X, ,  Y, and 2, is determined from the Lorenz equations (43)-(45). 
In the chaotic region the matrix in (51) has eigenvalues with positive real part on most 
points of a chaotic trajectory. In contrast, for the lasing region, the eigenvalues have 
negative real part. This indicates that conjugacy is unlikely to be maintained in the 
chaotic region in the presence of noise. Further support for this is found from 
constructing an eigenvector e corresponding to an eigenvalue A satisfying (26) but 
with A # (0, -(a+ l)}: 

i a 

0 \ 

X!“’ i 2a[l+(o+A)c+-’] \- A + b  

( e  needs to be normalised by fixing the constant a) .  The basis used for this eigenvector 
is described in the appendix. The fifth component denotes a projection onto the 
imaginary 2 direction. In the chaotic region there are eigenvalues with positive real 
part and so a perturbation with an imaginary component in the Im Z ‘direction’ will 
tend to grow and as a result conjugacy will break down. 

4. The general (noisy) case 

The full set of equations (8)-( 12) will be solved numerically using a lowest-order Euler 
algorithm [2]. From our (largely analytic) study of the deterministic case we expect 
to find instabilities in the chaotic region and consequent difficulties for the positive P 
picture in the presence of noise. Both the properties of individual trajectories and the 
effect of averaging over contributions from different trajectories are discussed below. 
Our numerical calculations indicate the following. 

(i)  W falls to the noise floor. 
(ii) In the lasing region (e.g. r = 10 and 16) conjugacy is preserved even when there 

is noise. In particular ( X , / X 2 ) ,  ( Y , /  Y2)  are approximately constant with modulus of 
near one. Im 2 remains small and fluctuating. 
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(iii) Over sufficiently long times, and for both conjugate and non-conjugate initial 
conditions, we find uniform phase diffusion in the lasing region; moreover conjugacy 
is recovered for the individual solution trajectories even if initial conditions are 
non-conjugate. 

(iv) In the chaotic region the solution trajectories move away from conjugacy. This 
is illustrated by four cases with r = 28, U = 10, b =$. C = 50. 

(a) A deterministic situation with conjugate initial conditions 

Xi = X2 = 0.63 

Y1= Y2 = 0.37 

z = 9.5. 
The quantities calculated are 

(53) 

1x1 - XTI l ~ l - ~ ~ l / ~ l ~ l l + l x 2 l ~  

Re Z Im Z log1 WI arg XI/ x2 I x1 I / I X2l. 

(These same quantities will be evaluated for the cases (b), (c) and (d) below.) 
Exact conjugacy would require 

Moreover for U = 10 from (29), (31) and (32) we would expect (even in the presence 
of moderate noise) that the evolution would rapidly show 

1x11 
1x21 

W - 0  -- (55) 

arg(X,/X2) -constant. 

Figures 1-4 show a departure from conjugacy. This instability is started off by the 
(very small) round-off noise. The measure of non-conjugacy is bounded but macro- 
scopic. 

Figures 5-7 show the expected behaviour for log1 WI, IX,/X,l and arg X,/X2. 

- 
tz; 

I 

G - 

0 16 32 40 6 4  80 
t 

Figure 1. (XI - X f l  against time for conjugate initial conditions and e = 0. 
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r? " 
0 16 32 48 64 80 

t 

Figure 2. IX, - X f l / ( l X , l +  IX,l) against time for conjugate initial conditions and E = 0. 

27 r 

ru 
01 
CL 

-99 
0 16 32 40 

t 
64 80 

Figure 3. Re Z against time for conjugate initial conditions and E = 0. 

-95  I 1 
0 16 32 48 64 80 

t 

Figure 4. Im Z against time for conjugate initial conditions and E = 0. 
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-16 

h 

-25  
0 16 32 48 64 80 

t 

Figure 5. Log,, W against time for conjugate initial conditions and E = 0. 

I 

I 
0 16 32  40 64 80 

t 

Figure 6. IX,/X,l against time for conjugate initial conditions and E = 0. 

-6 ' 
0 16 32 48 

t 
64 

Figure 7. A r g ( X , / X , )  against time for conjugate initial conditions and E = 0. 
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In fact the later time behaviour in figures 1-4 is periodic. This can be seen from 

(b) A deterministic case with slightly non-conjugate initial conditions 
figures 8 and 9. We are on a new attractor! 

Xi = X ,  = 0.63 
Yl = 0.37 + lo-? 
Y2 = 0.37 

(56) 
z = 9.5. 

Figure 10 shows a more rapid onset of significant departure from conjugacy. 
Again, log( WI, IXl(/IX21 and arg X l / X 2  show the expected behaviour. Moreover, 

(c) This case involves the noise strength E = lo-* but conjugate initial conditions 

Figure 11 shows the departure from conjugacy which is more severe. 
Log1 WI takes values near the noise floor while lXl[/lX21 and arg X l / X 2  show the 

expected behaviour and remain near 1 and 0 respectively. Noise causes large excursions 
from the limit cycle attractor of (a). 

the new attractor is again found to be the limit cycle of (a). 

as in (a). 

35 

-140 
-50 32 

Rex, 
Figure 8. Re 2 against Re XI for conjugate initial conditions and E = 0. 

Re X, 

Figure 9. Re Y, against Re XI for conjugate initial conditions and E = 0. 
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0 4.0 8.0 12 16 20 
t 

Figure 10. IX, - XfI against time for non-conjugate initial conditions and E = 0. 

0 4.0 8 .O 12 16 20 
t 

Figure 11. IX, - Xfl against time for conjugate initial conditions and E = lo-'. 

-3100 E 
.__ 

- 200 190 
R e  X ,  

Figure 12. Re Y, against Re X, for conjugate initial conditions and E = 

(d) This case involves a noise strength of E = but conjugate initial conditions. 
We have tried different initial conditions but there is a 'blow up' of the trajectories. 
For such noise strengths the calculation involving the Wigner representation [ 131 was 
satisfactory. Figure 12 shows typical behaviour and represents 15 time units of evolution. 
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The way that conjugacy is being broken (e.g. by going on to a new attractor or 
divergence of trajectories) shows that averaging will not recover behaviour for expecta- 
tion values in the chaotic region which is compatible with that found using the Wigner 
representation. 

(e) The steady states of (24) and (25) are stable to noise (provided it is not too 
large, namely E < IO-'). 

We conclude that although the positive P representation is satisfactory in the lasing 
and sublasing regions, above the chaos threshold the additional dimensions allow extra 
instabilities. These instabilities are sufficiently severe to drastically alter the nature of 
the solution from that which is expected. 
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Appendix 

We shall give a linearised stability analysis for the deterministic positive P Lorenz 
equations 

x, = - a ( x ,  - y , )  

y1 = - y ]  + X ] Z  

i = - b ( z -  r )  - x , y , - x 2 y 1 .  

x2= - a ( x , - y , )  

y 2  = -y, + x2z 

We write 

where Z('), X','), Xi'), Y?' and Yy) are real and define the steady state. We define 

(Preservation of conjugacy would imply f: = p $  =r- = pX = 0.) 



2778 S Sarkar, J S Satchel1 and H J Carmichael 

For the steady state 

(A4) reduces to 

V 5 = - b V 5  
with 

v, = (f=, p:)' 

v3 = (fl, P:) ?- 

v, = (z,zy) r. 

v, = (E, p y  

v4 = (f, 

The eigenvalues corresponding to the system of equations in (A5) are 

A* = i ( l +  a)  * [a(l +a)*- u(1- r ) ]"2  

A s =  b. 

A, becomes positive for r >  1 (which is the usual laser threshold). In fact from (AS) 
we see that there are four different eigenvectors corresponding to A + .  

Next we consider the stability analysis for the states given in (18)-(20) in 0 3. It 
is useful to make a change of phase so that the steady states for the field and polarisation 
are real, i.e. 

Y!"' = 0. (A71 

c y  = MV,,, (A8) 

The equation (A4) decouples into two sets of five equations, namely 

where 
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and 

The eigenvalues A of M satisfy 

h ( A  +a+ l ) [ A ( A  + U +  l ) ( A  + b ) + b ( r -  l)(A +2a)].  

( A l l )  is the basis for the eigenvectors referred to in 0 3. Apart from the eigenvalues 

A l = O  A z =  - ( U +  1)  (A131 

the remaining solutions of (A12) are precisely those that occur in the conventional 
Lorenz equations. 
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